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Terminology

o Corpus: a collection of authentic text organized into dataset
o Vocabulary (V): Set of allowed words
o Target: Representation for every word in V
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One-hot Encoding

o Representation using discrete symbols
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One-hot Encoding

o Representation using discrete symbols

o |V| words encoded as binary vectors of length |V|

Dictionary Word Representation

A Clelefdele]
Bus [0 [+ o Jon [o o |
ca ClelfTele]
_— [o o ol [+ ]0]
Zone [o o ol [ o] 1]
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@ Space inefficient (e.g. 13M words in Google 1T corpus)
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One-hot encoding: Drawbacks J

@ Space inefficient (e.g. 13M words in Google 1T corpus)
@ No notion of similarity (or, distance) between words
o '‘Dog' is as close to ‘Cat’ as it is to ‘Machine’

Dr. Konda Reddy Mopuri dl - 13/ Word Embeddings 6



mﬂﬂ}ﬁﬂﬂwﬁ

Notion of Meaning for words “ s

@ What is a good notion of meaning for a word?
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Notion of Meaning for words “ s

@ What is a good notion of meaning for a word?

@ How do we, humans, know the meaning of a word?
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@ What does silla mean?
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Notion of Meaning for words

@ Let's see how this word is used in different contexts

1. The[silla]is by the window, offering a nice view of the garden.
2. Can you pass me that[silla]so | can join the conversation?
3. After the event, please stack the[sillas | neatly against the wall.

4. | found a comfortable[silla Jin the corner and settled down to relax.
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Notion of Meaning for words

@ Does this context help you understand the word silla?

1. The[silla]is by the window, offering a nice view of the garden.
2. Can you pass me that[silla Iso | can join the conversation?
3. After the event, please stack the[sillas | neatly against the wall.

4. | found a comfortable[silla Jin the corner and settled down to relax.
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Notion of Meaning for words || N

@ Does this context help you understand the word silla?

@ { positioned near a window or against a wall or in the corner, used for
conversing/events, can be used to relax }

1. The[silla]is by the window, offering a nice view of the garden.
2. Can you pass me that[silla Iso | can join the conversation?
3. After the event, please stack the[sillas | neatly against the wall.

4. | found a comfortable[silla Jin the corner and settled down to relax.
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@ How did we do that?
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Notion of Meaning for words " e

@ How did we do that?

@ “We searched for other words that can be used in the same contexts,
found some, and made a conclusion that silla has to mean similar to
those words."
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Notion of Meaning for words " s

@ Distributional Hypothesis: Words that frequently appear in similar
contexts have a similar meaning
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Distributed Representations " PR

@ Representation/meaning of a word should consider its context in the
corpus
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Distributed Representations " PR

@ Representation/meaning of a word should consider its context in the
corpus

@ Use many contexts of a word to build up a representation for it
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Distributed Representations " PR

@ Co-occurrence matrix is a way to can capture this!

o size: (#words X #words)
o rows: words (m), cols: context (n)
o words and context can be of same or different size
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@ Co-occurrence matrix is a way to can capture this!
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Distributed Representations " s

@ Co-occurrence matrix is a way to can capture this!

o size: (#words X #words)
o rows: words (m), cols: context (n)
o words and context can be of same or different size

@ Context can be defined as a ‘h’ word neighborhood

@ Each row (column): vectorial representation of the word (context)
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Co-occurrence matrix | R
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@ Very sparse
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Co-occurrence matrix sz

@ Very sparse

@ Very high-dimensional (grows with the vocabulary size)
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Co-occurrence matrix

@ Very sparse
@ Very high-dimensional (grows with the vocabulary size)
@ Solution:Dimensionality reduction (SVD)!
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SVD on the Co-occurrence matrix “

@ X=UxvT
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SVD on the Co-occurrence matrix

@ X=UuxvT
ol x ] _
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SVD on the Co-occurrence

@ X =UuxvT

° X] _
[t 1
Ul Uk
-‘l’ \L mxk

@ X = Jlulvf + O'QUQ'I)g +.

Zd<1k o}

Dr. Konda Reddy Mopuri

matrix

o1 — v =
T
Ok] bk ~ v, —

.+ Jkukvg
T"is a d-rank approximation of X
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SVD on the Co-occurrence matrix W =

@ Before the SVD, representations were the rows of X
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o 8o rodas dad
SVD on the Co-occurrence matrix W =

@ Before the SVD, representations were the rows of X
@ How do we reduce the representation size with SVD 7
(&2 Wword - Umxk . Ekxk
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@ Wyord € R™*F (k < |V| = m) are considered the representation of
the words
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SVD on the Co-occurrence matrix

@ Wyord € R™*F (k < |V| = m) are considered the representation of
the words

@ Lesser dimensions but the same similarities! (one may verify that
XXxT = XXT)
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SVD on the Co-occurrence matrix " o

@ Wyord € R™*F (k < |V| = m) are considered the representation of
the words

@ Lesser dimensions but the same similarities! (one may verify that
XXxT = XXT)

@ Weontext =V € R™¥ are taken as the representations for the context
words

Dr. Konda Reddy Mopuri dl - 13/ Word Embeddings 19



mﬂﬁﬁﬂwﬁ

A bit more clever things... “ PR

@ Entries in the occurrence matrix can be weighted (HAL model)
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A bit more clever things... “ s

@ Entries in the occurrence matrix can be weighted (HAL model)
@ Better associations can be used (PPMI)
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A bit more clever things... “ s

@ Entries in the occurrence matrix can be weighted (HAL model)
@ Better associations can be used (PPMI)
@ ...
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@ Techniques we have seen so far rely on the counts (or, co-occurrence
of words)
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@
Count-based vs prediction-based mode e

@ Techniques we have seen so far rely on the counts (or, co-occurrence
of words)

@ Next, we see prediction based models for word embeddings
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@ T Mikolov et al. (2013)
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Word2Vec

@ T Mikolov et al. (2013)

@ Two versions: Predict words from the contexts (or contexts from
words)
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@ T Mikolov et al. (2013)

@ Two versions: Predict words from the contexts (or contexts from
words)

@ Continuous Bag of Words (CBoW) and Skip-gram
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Word2Vec

Input Projection Output Input Projection Output
W(t-2) Wit-2)
W(t-1) W(t-1)
Wt W(t)
Wi(t+1) W(t+1)
Wi(t+2) W(t+2)
CBOW Skip-gram
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Word Embeddings: Skip-gram | R

INPUT PROJECTION  OUTPUT
w(t-2)

wit-1)

\ w(t+1)

w(t+2)

w(t) —

Skip-gram
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embeddings input word

Input layer
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Word Embeddings: Skip-gram

@ Start: huge corpus and random initialization of the word embeddings
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@ Start: huge corpus and random initialization of the word embeddings

@ Process the text with a sliding window (one word at a time)

@ At each step, there is a central word and context words (other words
in the window)

@ Given the central word, compute the probabilities for the context
words
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Word Embeddings: Skip-gram _ e

@ Start: huge corpus and random initialization of the word embeddings

@ Process the text with a sliding window (one word at a time)

@ At each step, there is a central word and context words (other words
in the window)

@ Given the central word, compute the probabilities for the context
words

® Modify the word embeddings to increase these probabilities
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Word Embeddings: Skip-gram

P(weg|we) P(We—a|we) P(Wegawe) P(Wega|we)

I saw a cute grey cat playing in the garden

Wiz Wi1 Wi Wiepr Wiy

central
word

Figure from Lena Voita
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Word Embeddings: Skip-gram

P(we—g|we) P(we—a|we) P(Wepa|we) P(Wesa|wy)

I saw a cute grey cat playing in the garden

Wiz W1 W Wir1 Wiz

central
word

Figure from Lena Voita
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Word Embeddings: Skip-gram

P(wep|we) P(We—alwe) P(Wepa|we) P(Weiz|we)

I saw a cute grey cat playing in the garden

Wiz W1 Wy Wit Wiz

central
word

Figure from Lena Voita
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Word Embeddings: Skip-gram

P(wea|lwe) P(Weoq|we) P(Wegr|we) P(Weyo|wy)

I saw a cute grey cat playing in the garden

Wiz Wi We Wir1 Witz

central
word

Figure from Lena Voita
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Word Embeddings: Skip-gram

P(Wez|we) PWeoq|we) PWeyi|we) P(Wepz|we)

I saw a cute grey cat playing in the garden

We—2 Wi—1 We Wit Wet2

central
word

Figure from Lena Voita
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Word Embeddings: Skip-gram

o For each position int =1,2,...T in the corpus, Skip-gram predicts
the context words in m—sized window (@ is the variables to be
optimized)

T
Likelihood L(0) =[] []  Pwerslwe,0)
t=1 —m<j<m,j#0
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Word Embeddings: Skip-gram |

o The loss is mean NLL

1T
Loss J(0) = —7 H H log P(wij|wy, 0)

t=1 -m<j<m,j#0
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o What are the parameters (6) to be learned?

Dr. Konda Reddy Mopuri

Thisis our 9!
Allvy, and u, together

central context
words: v, words: u,

cat Vocabulary
size

Embedding dimension

Figure from Lena Voita
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Word Embeddings: Skip-gram ||l R e

o How to compute P(wyj|wy, §)?

Dot product: measures similarity of o and ¢
< Larger dot product = larger probability
_ _exp(uvd
P(ol0) = ge———2—
ZWEV exp(uwvc)
~~_ Normalize over entire vocabulary
to get probability distribution

Figure from Lena Voita
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Word Embeddings: Skip-gram

P(uve) P(usawlva) PQucutelva) P(ugreylva)

I saw a cute grey cat playing in the garden

Wiz We1 W Wepr Wiy
a
|
Ssaw
cute
grey
v u

Figure from Lena Voita

Dr. Konda Reddy Mopuri dl - 13/ Word Embeddings 36


https://lena-voita.github.io/

&r6bat 0885 e G0 IpoTens
Indian Institute of Technology Hyderabad

Word Embeddings: Skip-gram

P(usawlVeute) P(alVeute) P(ugreylvrurc’) PQucarlveute)

I saw a cute grey cat playing in the garden

Wiz We1 Wp Wiy Wi
a
Saw
cute
cat
grey
v u

Figure from Lena Voita
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Word Embeddings: Skip-gram

P(ualvgrey) P(ueute|Vgrey)  Pucat|Vgrey) P(UptayinglVgrey)

I saw a cute grey cat playing in the garden

Wi—2 Wi-1 W Wevr Wit
a
cute
cat
grey
playing
v u

Figure from Lena Voita
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P(ucutelVear) P(ugreylvcnu) P(“pla.yiugl”uu) P(uin|vear)

I saw a cute grey cat playing in the garden

Wiz Wi—q We  Wepr We+2

in

cute

grey
playing

v u

Figure from Lena Voita
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Word Embeddings: Skip-gram

P(u‘(/re,’ylUplnym_t/) P(uz:m,|'7pmy,m/) P(umlvplnym_//) P(uz,hp|l7pluym])

I saw a cute grey cat playing in the garden

Wi—2 Wi-1 W W1 Wiz
the
in
cat
re
playing arey
v u

Figure from Lena Voita
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Word Embeddings: Skip-gram

P(ugreylvm) P(ucatlvm) P(uinlvm) P(uthelum)

I saw a cute grey cat playing in the garden

We—2 We—1 We Wepr o Wiy
the
in
cat
playing
garden
v u

Figure from Lena Voita
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Word Embeddings: Skip-gram

o Train using Gradient Descent
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Word Embeddings: Skip-gram _ e

o Train using Gradient Descent

o For one word at a time, i.e., (a center word, one of the context words)
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Word Embeddings: Skip-gram

o Train using Gradient Descent
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o For one word at a time, i.e., (a center word, one of the context words)

o Jyj(0) = —log P(cute|cat) = —log % _

weVoc

T o
—Ueyte + 10g E €XP Uy,
weVoc
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Word Embeddings: Skip-gram ||l‘ Tt

1. Take dot product of v, with all 2.exp 3.sumall

pt

1 Ui Vear —— exp(liVear) L

/ T
“w;Umr - exp(Uy3zVear) -

exp(iy Vear)

- exp(UiyeVear)

uz«-/nvcu.t > exp(u\l»\;nvr(:t)
v u
4. get loss (for this one step) 5. evaluate the gradient,
make an update
o 9]:;(8)
Jeg(0) = =tliceveu +1og . exp(ulv) Vet S Ve — @5
ey cat
M
J:,;(6)

Uy:=U, — a———VWEV
duy,

Figure from Lena Voita
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Word Embeddings: Skip-gram

o Training is slow (for each central word, all the context words need to
be updated)
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Word Embeddings: Skip-gram I S

o Training is slow (for each central word, all the context words need to
be updated)

o Negative sampling: not all the context words are considered, but a
random sample of them
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Word Embeddings: Skip-gram _ e

o Training is slow (for each central word, all the context words need to
be updated)

o Negative sampling: not all the context words are considered, but a
random sample of them

o Training over a large corpus leads to sufficient updates for each vector
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Word Embeddings: Skip-gram

Dot product of v, :
* with u.,, -increase,
+ with allother u - decrease

)

Parameters to be updated:

Vcat
* uy, forallwin

the vocabulary

|V] +1 vectors

z:-éécm 0385 e 09 PpoTens
< feT

Indnn Institute .,v Technology Hyderabad

Dot product of v,
e with u.,,, - increase,
« with asubset of other v - decrease
Negative samples: randomly
selected K words

Parameters to be updated:
Vcat

Ueyre and u,, forw

in K negative examples

K+ 2 vectors

Figure from Lena Voita
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Word Embeddings: Skip-gram

embeddings input word
WN)(m Im>(1 :": PNX1
Input lauer

Can be viewed as a Neural Network
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Word Embeddings: Skip-gram

embeddings input word
i ”
wNXm 'mX1 w mXN PNX1
Input lauer Qutput layer

Can be viewed as a Neural Network
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Word Embeddings: Skip-gram

embeddings input word
H > V;
WN)(m Im>(1 Wi mXxXN PNX1 cle
SCores for the
Input lauer Output layer context words

Can be viewed as a Neural Network
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Word Embeddings: Skip-gram

embeddings input word
~
H > V;
WN)(m Im>(1 Wi mXxXN PNX1 cle
SCores forfﬁe
Input lauer Output layer context words

Can be viewed as a Neural Network
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Word Embeddings: Skip-gram |

@ Whxxm is the Wiord (used for representing the words)

Dr. Konda Reddy Mopuri dl - 13/ Word Embeddings 50



26bab 0888 dend H0% PaTenl
Indian Institute of Technology Hyderabad

Word Embeddings: Skip-gram

@ Whxxm is the Wiord (used for representing the words)
@ W/ . v is the Weontext (may be ignored after the training)
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Word Embeddings: Skip-gram _ e

@ Whxxm is the Wiord (used for representing the words)
@ W/ . v is the Weontext (may be ignored after the training)

@ Some showed averaging word and context vectors may be more
beneficial
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Bag of Words (BoW)

@ Bag of Words: Collection and frequency of words

Itis raining today ist 1
raining: 1
today:1_J

=

Today is a Sunday. It is g
also a sunny day. day: 1
is: 2
it:1
today: 1
sunday: 1
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CBoW

@ Considers the embeddings of ‘h’ words before and ‘h" words after the
target word
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26bab 0888 dend H0% PaTenl
tewmae

CBoW

@ Considers the embeddings of ‘h’ words before and ‘h" words after the
target word

@ Adds them (order is lost) for predicting the target word

INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)
w(t+1)

w(t+2)

CBOW
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CBoW

The dog slept on couch

The

dog

on

couch

D

. Konda Reddy Mopuri

w(t-2)
w(t-1)
_\SUM
/ I s
w(t+1) /
w(t+2)

- 13/ Word Embeddings
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@ Size of the vocabulary = m
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CBoW

@ Size of the vocabulary = m
@ Dimension of the embeddings = N
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Word Embeddings: CBoW _ e

@ Input layer Wi «,, (embeddings for the context words) projects the
context (sum of 1-hot vectors of all the context vectors) into N-dim
space

context
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Word Embeddings: CBoW

@ Input layer Wi «,, (embeddings for the context words) projects the
context (sum of 1-hot vectors of all the context vectors) into N-dim
space

@ Representations of all the (2h) words in the context are summed
(result is an N-dim context vector)

context
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Word Embeddings: CBoW _ e

@ Input layer Wi «,, (embeddings for the context words) projects the
context (sum of 1-hot vectors of all the context vectors) into N-dim
space

context
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Word Embeddings: CBoW

@ Input layer Wi «,, (embeddings for the context words) projects the
context (sum of 1-hot vectors of all the context vectors) into N-dim
space

@ Representations of all the (2h) words in the context are summed
(result is an N-dim context vector)

context
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Word Embeddings: CBoW e

@ Next layer has a weight matrix W/ .\ (embeddings for the center
words)
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Word Embeddings: CBoW

@ Next layer has a weight matrix W/ .\ (embeddings for the center
words)

@ Projects the accumulated embeddings onto the vocabulary

w cmx1 = w’ EN>(1

NXm mXN

First layer Second layer
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Word Embeddings: CBoW

@ Next layer has a weight matrix W/ .\ (embeddings for the center
words)

@ Projects the accumulated embeddings onto the vocabulary

£
?(n
4
g

E
NXm mXN wa | =] Coyy

Scores for m-way
classification
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Word Embeddings: CBoW | R

@ m- way classification — (after a softmax) maximizes the probability
for the target word

Wiixm Coa | =2 Wixw Eu | = € m Prnxi

-
Scores for m-way

classification probabilities
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Word Embeddings: CBoW e

@ WNXm is the Wcontext
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Word Embeddings: CBoW e

@ WNXm is the Wcontext
@ W/ . N is the Wyords
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@ Glove - Global Vectors
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Glove

@ Glove - Global Vectors

@ Combines the score-based and predict-based approaches
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@ Xj; in the co-occurrence matrix encodes the global info. about words
7 and j
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Glove

@ Xj; in the co-occurrence matrix encodes the global info. about words
7 and j
o p(j/i) = 34
@ Glove attempts to learn representations that are faithful to the
co-occurrence info.
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@ Glove attempts to learn representations that are faithful to the
co-occurrence info.
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Glove

@ Glove attempts to learn representations that are faithful to the
co-occurrence info.
@ Try to enforce v} ¢c; = log P(j/i) = log X;; — log X;
o wv; - central representation of word 1, cj - context representation of
word j
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@ Glove attempts to learn representations that are faithful to the
co-occurrence info.
@ Try to enforce v} ¢c; = log P(j/i) = log X;; — log X;
o wv; - central representation of word 1, cj - context representation of
word j
@ Similarly, v} ¢; = log P(i/j) = log Xij — log X; (aim is to learn such
embeddings v; and ¢;)
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@ To realize the exchange symmetry of
vle; =log P(j/i) = log X;; — log X;
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Glove

@ To realize the exchange symmetry of
vle; =log P(j/i) = log X;; — log X;

o we may capture the log X; as a bias b; of the word w;
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@ To realize the exchange symmetry of
vle; =log P(j/i) = log X;; — log X;
o we may capture the log X; as a bias b; of the word w;
o And, an additional term b;
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@ To realize the exchange symmetry of
vle; =log P(j/i) = log X;; — log X;
o we may capture the log X; as a bias b; of the word w;
o And, an additional term b;

@ viTCj+bi+l)~- = log X
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o To realize the exchange symmetry of
vle; =log P(j/i) = log X;; — log X;
o we may capture the log X; as a bias b; of the word w;
o And, an additional term b;

@ UiTCj +bi+b~j = log X;;
@ Since log X; and log X; depend on the words 7 and j, they can be
considered as the word specific biases (learnable)
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@ Learning objective becomes
argmin J() = 3, ; (vFej + b+ bj — logXZ])

V;,C4,b4,b;5
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@ Learning objective becomes . )
argmin J() = 3, ; (v} ¢j + b; + b; — log Xij)

V,Cj,bi,b;
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Glove

@ Learning objective becomes
argmin J() = > (vich +b; + bNJ — log Xij)2
v;,Cj,bi,b;

@ Much of the entries in the co-occurrence matrix are zeros (noisy or
less informative)
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Glove

@ Learning objective becomes
argmin J() = > i (vich +b; + bNJ —log Xij)2
v;,Cj,bi,b;

@ Much of the entries in the co-occurrence matrix are zeros (noisy or
less informative)

@ Suggests to apply a weight
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context word bias terms
vector vector  (also learned)

NS

J©) = D" FONW. - (WL, + b, + by, = logN(w, )Y

w,c EV

R ) X
Weighting function to: f(1)
| aif. "
* penalizerare events 1 {(i‘/xwm) ‘Uh< A:lmm
* notto over-weight otherwise.
frequent events 0 ' @=0.75, Xy = 100

Figure from Lena Voita
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Evaluating the embeddings " PR

@ Intrinsic - studying the internal properties (how well they capture the
meaning: word similarity, analogy, etc.)

Dr. Konda Reddy Mopuri dl - 13/ Word Embeddings 68



mﬂﬂ}ﬁﬂw

Evaluating the embeddings " s

@ Intrinsic - studying the internal properties (how well they capture the
meaning: word similarity, analogy, etc.)

@ Extrinsic - studying how they perform a task
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Analysing the embeddings “ s

@ Walking the semantic space
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Analysing the embeddings “ PR

@ Walking the semantic space

@ Structure - (form clusters) nearest neighbors have a similar meaning,
Linear structure
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semantic:  v(king) - v(man) + v(woman) = v(queen)
SYNtactic: y(kings) - v(king) + v(queen) ~ v(queens)

WOMAN

/ AUNT QUEENS
MAN /

UNCLE KINGS \
QUEEN \ QUEEN

KING KING

Figure from Lena Voita
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Glove

Dr.

Country and Capital Vectors Projected by PCA
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Figure from Lena Voita
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